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Editor's Introduction 

Considering how dependent on the daily cycle of light and darkness our biological 
functions are, intensive investigation of the brain's remarkable clock by which we 
adapt to the earth's rotation is long overdue. This deficit in clinical research, how­
ever, is being rapidly corrected, stimulated perhaps by air and space travel, and 
more pragmatically by the frequency of sleep disturbances incurred by work 
around the clock, aging, and bad sleep habits. Dr. William Schwartz admirably up­
dates us on recent advances in the understanding of what the circadian clock is, 
how it works, and what we can do to manipulate its cycle. 

G.H. Stollennan 

And God said: "Let there be light." And there was light. And God saw the light, 
that it was good; and God divided the light from the darkness. And God called the 
light Day, and the darkness He called Night. And there was evening and there was 
morning, one day. 

Genesis I, 3-5 

Since the beginning of life on Earth, plants and animals have been forced 
to adapt to the planet's daily rotation about its axis. Biologic rhythms that 
are synchronized to the periodic alternation of day and night have been 
known since antiquity. The recognition that such rhythmicity is an innate 
feature of organisms, however, has come about only much more recently. 1 

Usually credited with this discovery is the French astronomer Jean Jacques 
d'Ortous de Mairan, who in 1729 reported that the daily leaf movements 
of a heliotrope plant persisted in the absence of sunlight; in 1832 Augustin 
de Candolle demonstrated that these leaf openings occurred in constant 
darkness an hour or two earlier each day, i.e., they showed a circadian 
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(Latin; circa = about; dies= day) rhythm of 22 to 23 hours. The interpre­
tation of these observations- that an endogenous clock mechanism oscil­
lates independent of geophysical cues- is now generally accepted, but it 
was still the subject of debate as recently as 1960. 1 

The purpose of this chapter is to provide an introductory overview of 
this remarkable physiologic timekeeping system. The objectives are to (1) 
summarize our current understanding of the basic biology of circadian 
rhythmicity; (2) highlight some aspects of internal timing in humans that 
should be of interest to clinicians; and (3) survey some putative "clock" 
disorders and the possible means to treat them. 

The Concept of a Circadian Clock 

Ordinarily, the biologic activities of plants and animals are synchronized 
(entrained) to the natural day-night cycle by environmental light and dark­
ness. However, even in an aperiodic environment, many rhythms continue 
to oscillate with frequencies only slightly different from that of the daily cy-
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Free-running circadian rhythms of activity in mouse (A) and human (B). The data 
are presented as "actograms," i.e., activity over the course of each 24-hour interval 
is plotted horizontally from left to right, with succeeding days stacked vertically 
from top to bottom. The onset of wheel-running by the mouse in a constant (time­
free) environment begins earlier each day, i.e., it expresses a free-running circadian 
period of less than 24 hours. Activity in the human tends to start later each day, 
i.e., a greater than 24 hour period. Also shown for the human are maximal (open 
triangles) and minimal (closed triangles) values of rectal temperature. (Modified 
from Schwartz WJ, Zimmerman P: J Neurosci 1990; 10:3685-3694 and Wever 
RA: Sleep 1984; 7:27-51.) 
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de to which they were previously entrained; that is, they "free run" with 
approximate 24-hour (circadian) periods (Fig 1). The persistence and 
properties of such environmentally independent, self-sustaining rhythms 
suggests the existence of an innate timekeeping mechanism, i.e., a "biolog­
ic clock. "4 - 6 The fact that the clock's endogenous period is not exactly 24 
hours does not mean that it is imprecise. Rather, this property allows for 
more stable entrainment by environmental cycles and for organisms to 
successfully adapt to seasonal changes in day length (photoperiod). 

The clock consists of three formal functional components: (1) an input 
(afferent) pathway for entrainment to light-dark cycles; (2) a circadian 
pacemaker that actually generates the oscillation; and (3) an output (effer­
ent) pathway for expression of overt, measurable rhythms (Fig 2). Figure 2 
highlights some of the problems inherent in experimental investigations of 
this system. For example, a pharmacologic or surgical treatment might 
abolish an overt circadian rhythm either by inactivating the pacemaker or 
by merely uncoupling an output pathway from the still oscillating pace­
maker. Thus, arrhythmicity of a measured function may represent loss of 
the "hands" of the pacemaker rather than damage to its "gears." This dif­
ficulty emphasizes the possible confound when clock activity is assessed by 
measurements limited to a single output. On the other hand, experimental 
treatments that affect the free-running period of the oscillation must reflect 
changes in pacemaker behavior, either by a direct action on the pace­
maker or by an indirect action via an input pathway. In general, the inter­
pretation of circadian studies is made easier when data are continuously 
recorded from individual subjects, each monitored over several circadian 
cycles (see Fig 1). More confusing results can arise when a group of sub­
jects is pooled and sampled at only a few phases of a single cycle, espe­
cially if the rhythms among the individual subjects are not synchronous. 
For example, apparent arrhythmicity of a population of subjects may be 
attributed either to a loss of rhythmicity of each subject or to a desynchro­
nization of rhythmicity between subjects because each of the individuals 
expresses a rhythm that differs in phase or period . 

In actuality, the real circadian clock js much more complex than the 
open-loop block scheme of Figure 2. Specifically, the system seems to in­
clude some closed-loop features: the pacemaker's photic input appears to 
be gated by a rhythm of visual sensitivity in the eyes, 7 and some of the 
pacemaker's rhythmic outputs may feed back to modulate the endogenous 

FIG 2. 

light Circadian Overt 
Rhythm A Pacemaker 

~~ ·O . rv 
Afferent Efferent 

Components of a circadian clock. (Modified from Takahashi JS, Zatz M: Science 
1982; 217:1104-1111. 
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FIG 3. 
Masking of rectal temperature (A) and plasma cortisol (8) rhythmicity by sleep. 
Temperature and cortisol rhythms during a normal routine of alternating activity 
and sleep (solid lines) are compared to the patterns during sleep deprivation (dot­
ted lines). Sleep lowers body temperature for the entire sleep period and inhibits 
cortisol secretion for the first 4 hours of the sleep period (arrows). (Modified from 
Wever RA: Experentia 1985; 41:332-342 and Weitzman ED, Zimmerman JC, 
Czeisler CA, et al: J Clin Endocrinol Metab 1983; 56:352-358.) 

period of the pacemaker itself. 8 · 
9 Another important complication not on 

the diagram is the fact that a manifest rhythm's amplitude and shape are 
governed not only by the underlying pacemaker but also by influences that 
can bypass the pacemaker, such as changes in activity, posture, and the 
environment. Light, for example, may directly modulate or modify an 
overt rhythm's waveform (light as a masking effect) in addition to its en­
training role in synchronizing the rhythm's phase by resetting the pacemak­
er's oscillation (light as a zeitgeber [German; zeit = time; geber = giver]). 
Importantly, an overt rhythm of one variable may "mask" the expression 
of others. As one example, the patterns normally observed for the rhythms 
of body temperature10 and plasma cortisol11 are partly under pacemaker 
control and partly secondary to the rhythmic superimposition of sleep, 
which by itself lowers temperature and inhibits cortisol secretion (Fig 3). In 
an effort to minimize such factors that mask the circadian pacemaker's spe­
cific contribution to rhythmicity, researchers use a 24-hour "constant rou­
tine" protocol,12 in which human subjects remain awake continuously, eat 
an identical snack hourly, and are housed in an environment of constant 
light, temperature, noise, and social cues. 

The circadian system functions both to recognize the local time of day 
(as a sundial) and to measure the passage of time (as an hourglass). The 

FIG 4. 
Derivation of a phase-response curve. Panels A to C show free-running circadian 
rhythms of locomotor (wheel-running) activity in individual rodents housed in con­
tinuous darkness. Animals are previously entrained to a 12hr:12 hr light-dark cy­
cle before exposure to constant conditions. By convention, circadian time (ct) 12 is 
the onset of nocturnal locomotor activity; "subjective day" (ct 0-12) corresponds 
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to the 12 hour interval when the lights would have been on during the preceding 
light-dark cycle; and "subjective night" (ct 12-24) corresponds to the 12 hour in­
terval when the lights would have been off. A 15 minute light pulse (arrows) is ap­
plied at different phases across the free-running circadian cycle. A pulse presented 
during mid-subjective day (A) has little or no effect; a pulse during early subjective 
night (8) is interpreted as a late dusk and delays the succeeding rhythm; and a 
pulse during late subjective night (C) is interpreted as an early dawn and causes a 
phase advarice. The phase-response curve plots the direction and amount of such­
phase shifts against the times the light pulses are given. When pulses span the en­
tire free-running circadian cycle, the waveform of the phase-response curve follows 
the solid line shown. (Modified from Schwartz WJ, Zimmerman P: J Neurosci 
1990; 10:3685-3694 and Moore-Ede MC, Sulzman FM, Fuller CA: The Clocks 
That Time Us: Physiology of the Circadian Timing System. Cambridge, Mass, Har­
vard University Press, 1982.) 
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pacemaker works as a clock because its endogenous period is accurately 
entrained to the external 24-hour period by daily light-induced phase shifts 
that reset the pacemaker's oscillation. Advances or delays occur because 
the pacemaker is differentially sensitive to light exposure at different phases 
of · its free-running circadian cycle. This rhythm of light sensitivity can be 
quantified as a "phase-response curve" by plotting the phase shifts that 
occur in a measured rhythm when light pulses are applied at different 
phase points across the free-running circadian cycle (Fig 4). Light pre­
sented during the early subjective night is interpreted as a late dusk and 
delays the succeeding rhythm, whereas light exposure during the late 
subjective night is interpreted as an early dawn and causes a phase 
advance. Light given at times other than the subjective night has little or 
no phase-shifting effect. 

Precise circadian timekeeping is of profound importance, ensuring that 
body rhythms are appropriately integrated for concerted action and en­
trained to local time. The temporal sequencing of various clock-controlled 
events can be dramatically affected both by varying the sensitivity of the 
organism to environmental cycles and by altering the properties of the 
pacemaker itself, i.e., by shortening or lengthening the pacemaker's en­
dogenous period (thus changing the pacemaker's steady-state phase rela­
tionship to the entraining light-dark cycle) or by increasing or decreasing 
the amplitude of the pacemaker's oscillation (thus changing the strength of 
the pacemaker's coupling to the rhythms that it drives). 

It is important to note that the principles summarized above apply to hu­
mans as well as to experimental animals. In the 1960s, experiments that 
kept subjects in temporal isolation in cellars or caves demonstrated that the 
human circadian system has an apparent free-running period of about 25 
hours, i.e., the clock tends to run slow by about an hour a day. Theim­
portance of environmental light as an entraining agent in humans was sug­
gested by the observation that blind persons, including those living in nor­
mal society who are exposed to multiple periodic social cues, may show 
free-running (unentrained) circadian rhythms. 13

• 
14 Recently, the ability of 

ambient light to shift the phase15- 19 and/or entrain20- 22 human rh~hmic­
ity has been documented, and human "phase-response curves"23

• 
4 have 

been generated. Photic effects in humans, 25 unlike those in laboratory ro­
dents or monkeys,26 require high light intensity, i.e., daylight (on the order 
of thousands or tens of thousands of lux) rather than indoor lighting (on 
the order of a few hundred lux). 

Localization of a Clock to the Suprachiasmatic Nuclei of the 
Hypothalamus 

There is now strong evidence (mostly but not exclusively in rodents) that 
the suprachiasmatic nuclei (SCN) in the anterior hypothalamus are the site 
of the mammalian circadian pacemaker. 27

• 
28 The SCN are paired nuclei 

straddling the midline, bordering the third ventricle, bounded anteroven-
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trally by the optic chiasm (Fig 5). No other discrete area of mammalian 
brain has yet been found with the circadian pacemaking properties of the 
SCN. The homologue of the nuclei also appears to play a crucial 
timekeeping role in a few species of lizards and birds that have been ex­
amined. 

In rodents, electric or pharmacologic stimulation of the nuclei causes 
predictable phase shifts of overt circadian rhythms, whereas destruction of 
the SCN results in a breakdown of the entrainment or generation of a wide 
array of such rhythms. More than 753 of the nuclei must be ablated to 
eliminate expressed rhythmicity, and no recovery of function is found even 
after prolonged postoperative survival. Three intrinsic properties of the 
SCN (energy metabolism, neuronal spike activity, and vasopressin secre­
tion) exhibit circadian rhythmicity both in vivo and in vitro; all of these 
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FIG 5. 

""-.. 

Location of the human SCN (stars) . Top, sagittal views of whole brain (right) and 
hypothalamus (left) ; bottom, coronal section at the level of the line through the 
hypothalamus. 1 = paraventricular nucleus; 2 = dorsomedial nucleus; 3 = poste­
rior nucleus; 4 = ventromedial nucleus; 5 = mammillary body; 6 = arcuate nu­
cleus; 7 = optic chiasm; 8 = infundibular stalk; 9 = anterior commissure; 10 = 
third ventricle; 11 = nucleus of the diagonal band of Broca; 12 = preoptic area; 13 = 
supraoptic nucleus. (Modified from Klein DC, Moore RY, Reppert SM (eds) : Supra­
chiasmatic Nucleus: The Mind's Clock. New York, Oxford University Press, 1991 and 
Schwartz WJ, Busis NA, Hedley-White ET: J Neurol 1986; 233: 1-4.) 



88 I W.J. Schwartz 

rhythms peak during the subjective day in both diurnal and nocturnal 
mammals. Finally, neural grafts of SCN tissue reestablish overt rhythmicity 
in arrhythmic, SCN-lesioned recipients, and the rhythms restored by the 
transplants display properties that are characteristic of the circadian pace­
makers of the donors rather than those of the hosts. 

The architecture of the SCN has been studied extensively. The SCN 
cells are among the smallest in the brain, are very densely packed, and 
contain a number of neural peptides (vasopressin, vasoactive intestinal 
polypeptide, somatostatin, gastrin releasing peptide, enkephalin, atrial 
natriuretic peptide, and angiotensin). Most SCN axons terminate locally 
within the nuclei amidst a myriad of synaptic interactions, including den­
dro-dendritic contacts. Gamma-aminobutyric acid (GABA) is the most 
plentiful substance identified in SCN axons and boutons. 

Neural afferents to the SCN include visual inputs conveyed directly from 
retinal ganglion cells via a "retino-hypothalamic" tract, which appears to 
be both necessary and sufficient for entrainment of overt circadian rhythms 
to the environmental light-dark cycle. The neurotransmitter of this projec­
tion is uncertain but is probably an excitatory amino acid. 29

• 
30 Additional 

photic information is channeled indirectly to the SCN via fibers from the 
intergeniculate leaflet (a subdivision of the lateral geniculate nucleus), and 
lesions of the leaflet suggest that it may mediate some of the effects of 
lightintensity on overt circadian rhythmicity. Some of the fibers of this 
"geniculo-hypothalamic" tract stain for immunoreactive neuropeptide Y. 
Plentiful serotonergic fibers also ramify within the SCN. Besides neural af­
ferents, the SCN also receive hormonal input; for example, the nuclei con­
tain high-affinity receptors for the pineal hormone melatonin. The SCN ef­
ferents mainly innervate neighboring parts of the hypothalamus. 

Extracellular recordings of the SCN' s electric activity show a low fre­
quency of spontaneous discharges. About one third of the recorded units 
respond to light, usually by increasing their firing rates. The responses are 
sustained, proportional to light intensity, and elicited from diffuse receptive 
fields lacking a retinotopic organization. These SCN neurons appear to 
code for luminance (especially in the range of illumination intensities cor­
responding to dawn and dusk) and do not discriminate the temporal and 
spatial stimuli required for eye movements or pattern vision. 

It is not clear how the timing signal from the SCN regulates the rest of 
the brain's rhythms, i.e., whether it does so by directly imposing rhythmic­
ity, entraining subservient oscillators, filtering the outputs of subordinate 
systems so that their overt expression occurs only at specific times, or by 
combining a number of these mechanisms. Also unknown are the cellular 
and molecular processes that constitute the SCN's actual timekeeping ma­
chinery. In fact, for no circadian pacemaker (including those in unicellulars, 
fungi, insects, and molluscs) is this mechanism understood. Neuropharma­
cologic approaches have been difficult. 31 Nicotinic or glutamatergic antag­
onists block light-induced phase shifts of overt circadian rhythms in rodents 
and inhibit SCN neuronal responses to optic nerve stimulation in hypotha­
lamic slices, although administration of the agonists (carbachol or 
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glutamate) to the animals does not exactly reproduce light's phase-shifting 
action. Manipulation of brain GABA-ergic and serotonergic systems also al­
ters the circadian pacemaker's responsivity to light and entrainment to the 
light-dark cycle, but the observed effects are quite complex. 

It is important to note that the human SCN have also been clearly iden­
tified by cytoarchitectural,32 immunohistochemical,33· 34 and receptor au­
toradio$.aphic techniques35

; that they receive a direct retinal innerva­
tion36· ; and that disturbed rhY!hmicity may follow damage to this region 
of the human hypothalamus. 38

• 
39 

Human Circadian Rhythms and Effects on Medical Practice 

A host of daily rhythms is catalogued in humans (Fig 6).40
-

42 The wave­
forms of these rhythms take a variety of shapes, from relatively sinusoidal 
(body temperature) to pulsatile (growth hormone secretion). The phase of 
each rhythm is stable and reproducible with respect to time of day. Rhyth­
micity is in fact a universal feature of normal physiol~c and psychologic 
functioning, even very early in human development. Indeed, the classic 
"constancy" of the internal milieu probably emerges only through the ac­
tion of rhythmic, mutually opposed underlying control systems. 

Traditionally, the rhythm most easily measured longitudinally in individ­
ual subjects is the body temperature rhythm, and this rhythm is used com­
monly as a phase reference marker for the human circadian pacemaker. 
Although temperature rhythms may differ somewhat in phase and ampli­
tude between different subjects, the rhythm is remarkably consistent from 
day to day in a single individual. Both sleep-dependent and sleep-indepen­
dent processes contribute to the overt expression of the body temperature 
rhythm. 10 Under normal conditions, the temperature cycle is influenced by 
our habitual rest-activity rhythm, exercise, and ambient temperature. Both 
sleep and recumbency decrease body temperature, whereas wakefulness, 
upright posture, and physical activity increase it. However, when these 
confounding influences are removed during "constant routine" protocols, 
a persistent dock-driven component of the temperature rhythm can be un­
masked (see Fig 3). 

The timin? of sleep and wakefulness is also under prominent circadian 
control.44

-
4 Subjective "sleepiness" corresponds primarily to the night­

time trough of the temperature cycle and secondarily to a phase about 12 
hours later (i.e., a siesta). Sleep attempted at times other than these is dif­
ficult and disorganized. Appreciation of these relationships has been aided 
by studies of humans in temporal isolation. After prolonged experiments in 
such unscheduled environments, associated rhythms within individual sub­
jects may appear to become uncoupled as their free-running phase and 
period relationships become desynchronized. Such "internal desynchroni­
zation" occurs as the rest-activity cycle adopts a period of approximately 
33 hours while body temperature rhythmicity persists with a 25 hour pe­
riod. Sleep under these circumstances occurs at various phases of the tern-
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perature rhythm. In these studies, the architecture of rapid eye movement 
sleep and the duration of sleep episodes depend on the phase of sleep on­
set within the circadian cycle; subjects tend to awaken as their free-running 
body temperature rhythms rise toward maximum. On the other hand, the 
"intensity" of sleep within an episode, as putatively measured by the 
amount of slow wave activity on the electroencephalogram, seems heavily 
influenced by the length of prior wakefulness. 48 

Much work has also focused on endocrinologic rhythmicity. 49 Hormonal 
rhythms typically exhibit complicated waveforms, reflecting the combined 
actions of circadian influences, masking effects of sleep and feeding, and 
pulsatile secretion. Plasma growth hormone, prolactin, thyrotropin stimu­
lating hormone (TSH), and luteinizing hormone (LH) are all elevated in 
humans during sleep at night. The major surge of growth hormone during 
the first 2 hours of sleep is associated with deep slow wave sleep. Prolactin 
levels are elevated for a longer duration, subsiding only 1 to 2 hours after 
awakening. Both hormones are strongly affected by sleep per se, i.e., se­
cretion is blunted when sleep is prevented during the night, whereas secre­
tory peaks can be induced when subjects nap during the day. An opposite 
effect of sleep is exerted on TSH levels; sleep inhibits the thyrotropic axis, 
with TSH levels nearly doubled during sleep deprivation. Sleep-associated 
LH secretion occurs during early puberty in boys and girls. 

Other neuroendocrine rhythms, however, are relatively independent of 
sleep. Plasma corticosteroids exhibit a complex profile of episodic secretion 
over 24 hours (perhaps 6 to 9 episodes per day, some of which are asso­
ciated with meals). Most of the peaks begin late in sleep, forming a large 
daily surge from 3:00 to 9:00 A.M., and morning corticosteroid secretion 
persists during sleep deprivation. The pineal hormone melatonin under­
goes a dramatic nocturnal increase in its synthesis and secretion. Environ­
mental light acts to both suppress melatonin production and entrain its cir­
cadian rhythm, ensuring that high levels of melatonin are restricted to the 
dark phase in both nocturnal and diurnal animals regardless of the timing 
of their sleep. The hormone is believed to play an important role in pho­
toperiodic behaviors as a transducer of day length. Melatonin and its me­
tabolite 6-sulphatoxymelatonin can be measured in plasma and urine, re­
spectively, and these rhythms are proving useful as phase markers for the 
human circadian pacemaker. 50 

The enormous clinical and practical importance of human circadian 
rhythmicity is now better realized. 5 · 

41
• 

42 Performance capabilities decrease 
at night, and it is probably no coincidence that the disasters at Three Mile 
Island, Chernobyl, and Bhopal all occurred between midnight and dawn. 51 

In the hospital, proper interpretation of laboratory values and diagnostic 
tests hinges on a working knowledge of human endocrinologic and physi­
ologic rhythmicity. Every practitioner knows that the interpretation of a 
plasma cortisol level depends on the time of day that the sample is drawn. 
It is also well known that an oral glucose tolerance test given in the after­
noon will yield plasma glucose values nearly double those obtained by 
tests in the morning. 49 Even immune reactivity has a circadian basis; the 
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area of induration after tuberculin (purified protein derivative) skin testing 
varies threefold as a function of the time of antigenic challenge. 52 

Daily rh~ms such as these may be important in the pathophysiology of 
disease. 5 • 

1
• 

42 In fact, one of the inherited dystonias is essentially defined 
by its marked daily fluctuation. 53 Asthmatics display heightened bronchial 
constriction in the early morning, at the time that normal subjects also ex­
perience the trough of their rhythm of peak expiratory flow rate. 54 Night­
time decreases of airway patency and dynamic compliance and increases 
of pulmonary resistance and vagal tone serve to magnify asthmatic sensi­
tivity to environmental triggers. Also showing a marked daily rhythm (but 
peaking in the late morning) is the incidence of myocardial infarction, sud­
den cardiac death, and ischemic stroke. 55

· 
56 Symptoms and signs of myo­

cardial ischemia, including angina pectoris, ST segment displacement, and 
positive treadmill tests, are more frequent 4 hours after awakening in the 
morning. Increased circulating catecholamine levels, decreased fibrinolysis, 
and increased platelet aggregation also occur in the morning hours and 
could trigger thrombus formation. 

It should not be surprising that the efficac~, side effects, and toxicity of 
drugs are greatly influenced by time of day. · 41

• 
42 Both drug disposition 

(absorption, distribution, metabolism, and elimination) as well as target or­
gan sensitivity are susceptible to body rhythmicity. Thus, a given drug dose 
is not equally effective (or toxic) throughout the day. The clinical utility of 
this concept is exemplified by the practice of administering exogenous ste­
roids in the morning (rather than in the evening or in divided doses) to 
minimize adrenocortical suppression. In addition, the study of rhythmic 
pharmacokinetics of anticancer drugs has led to some novel scheduling 
strategies for enhancing effectiveness and minimizing toxicity.57 It is impor­
tant to note that constant drug delivery does not ensure a temporally in­
variant drug effect. Indeed, constant intravenous infusion of heparin results 
in rhythmic anticoagulation, maximal at night. 58 Even the seemingly innoc­
uous infusion of saline is more likely to cause iatrogenic edema at night 
than day,59 partly because of renal rhythms that affect the handling of im­
posed fluid loads. 

Incidentally, some practical tips on daily living come from an intimate 
knowledge of human circadian rhythmicity. Although it seems intuitive that 
one is best prepared to confront the dentist early in the morning, circadian 
principles suggest instead that the visit be postponed until after lunch, 
when threshold to tooth pain and duration of anesthesia are greatest. 4 For 
those who bring extra work home in the evening, it should be of interest 
that the performance measure that improves over the day, peaking at 8:00 
P.M., is the "simple serial search" task (similar to proofreading); the ability 
to retain information, on the other hand, is lowest at this time. 51 For some 
persons, the timing of their exercise regimen may be as important as its 
intensity; patients with classic or Prinzmetal's angina show a greater exer­
cise tolerance in the afternoon than in the morning. 60

• 
61 Last, and of no 

surprise to obstetricians and parents, is the pronounced daily rhythm of the 
initiation of labor, which occurs most frequently from 12:00 A.M. to 4:00 
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A.M.
42 In fact, mammals generally give birth during their inactive phase; 

parturition in rats, for example, occurs during the day. This circadian regu­
lation ensures that births occur when the dams are in the burrow and not 
while they are foraging away from the nest. 

Disorders of Clock Function 

Rapid Time Zone Change S~ndrome. ("Jet L~g")_.-When a ne~2 phase-shifted environmental cycle 1s acutely imposed m either laboratory 
or actual field63 studies, overt circadian rhythms appear to resynchronize at 
different rates, causing instabilities in the phase relationships among the 
rhythms. The analysis of this resynchronization is complicated by highly 
dynamic masking effects, because sleep and meals are taken out of phase 
and temporarily disrupt the waveforms of marker rhythms (in fact, the cir­
cadian pacemaker itself may reentrain much more quickly than the mea­
sured waveforms would indicate). This transient temporal disorganization is 
experienced as the symptoms of "jet lag," which include insomnia, fatigue, 
headache, irritability, dizziness, and loss of appetite. The insomnia and di­
minished daytime alertness are caused by a combination of sleep depriva­
tion and circadian phase shift. The number of days required for full resyn­
chronization of rhythms after transmeridian travel depends partly on the 
number of time zones crossed; it is generally faster after westward flights 
(phase delay) than after eastward flights (phase advance) of the same mag­
nitude. The conventional rule of thumb is that 1 day is required for each 
time zone passed. The direction of flight (outbound vs. homeward) and the 
time of departure (night vs. day) seem to be only minor factors. 

Rotating Shift Work Schedules.-About 1 of every 5 working men 
and women work shifts that alternate between day and night. Although in­
dividual tolerance to shift work varies enormously, these workers report 
sleep-wake disruptions (in large surveys, half of them report falling asleep 
at least twice a week on the job), gastrointestinal complaints (with docu­
mented peptic ulcer disease), and cardiovascular disorders. 64 It appears 
that most workers are merely "staying up late" on the night shift, rather 
than adjusting to it. Fatigue on the job is caused by working at the trough 
of the normal performance and temperature rhythms and by cumulative 
sleep loss from daytime insomnia. Symptoms may be minimized by rotat­
ing the shifts in a phase-delaying manner (day to swing to night) every 3 
weeks. 65 Evening personalities ("night owls") are said to tolerate shift work 
well and tend to take their leisure time after sleep and before work, rather 
than the usual pattern of leisure after work and before sleep. Studies to 
prospectively identify those individuals who may not tolerate rotating work 
schedules have considerable economic and public health implications. 

Sleep Disorders.-The "delayed sleep phase syndrome"66 can be dif­
ferentiated from other forms of insomnia and has been estimated to ac­
count for 10% of all patients who report difficulty with sleeping. Patients 
cannot fall asleep at the desired clock time required to meet work sched-
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ules; they typically finally fall asleep between 2:00 A.M. and 6:00 A.M .. The 
abbreviated night's sleep then leads to daytime somnolence and fatigue. 
However, when not required to maintain a strict schedule (e.g., weekends, 
holidays, and vacation periods), the patient will fall asleep normally if al­
lowed to adopt an idiosyncratic schedule, e.g., going to bed at 3:00 A.M. 

and arising at 11:00 A.M .. These individuals have normal sleep duration 
and architecture, but the phase of their sleep period within the 24-hour 
day is abnormal and must be reset to occur at a socially acceptable clock 
time. There maY- be milder forms of this syndrome that present as a sleep­
onset insomnia. 07 Less common is the "advanced sleep phase syndrome," 
in which patients are hypersomnolent in the evening, retire early, and 
spontaneously awaken in the early morning alert and refreshed. This 
pattern is similar to the sleep of the normal elderly. Finally, the "hyper­
nychthemeral syndrome"68 leads to insomnia secondary to a free-running 
(unentrained) sleep-wake cycle, sometimes caused by either a defective 
entrainment mechanism (as in blindness) or a weakened appreciation of 
societal cues (as in some types of personality disorder). 

Affective Illness.-The symptoms of endogenous depression are of­
ten periodic, with a prominent diurnal variation of mood. On one hand, 
this may merely reflect the effect of normal body rhythmicity on the ex­
pression of depressive symptomatology; on the other hand, abnormalities 
of circadian rhythms in these patients have also been noted, including de­
creased amplitude

9 
distorted waveform, day-to-day instability, and unusual 

48-hour periods. 6 Interestingly, some rhythms in some patients appear to 
be phase-advanced, and the shortened latency of rapid eye movement 
sleep onset, early morning awakening, and abnormal cortisol and temper­
ature rhythms of depression have been proposed to represent such a 
phase shift. One of the possible causes of this anomaly would be a circa­
dian pacemaker running faster than normal; when this abnormal oscillation 
becomes entrained to the 24-hour environmental cycle, its phase would be 
advanced compared to normals. At present, however, there is insufficient 
evidence to interpret these rhythm disturbances in depression, and no 
clear consensus has emerged regarding their nature (i.e., are the altered 
waveforms because of shifts in phase or merely changes in shape?) or sig­
nificance (i.e., are the abnormalities trait- or state-specific?). Conclusions 
have been hampered by the diagnostic heterogeneity of the groups stud­
ied, small sample sizes, poorly matched control populations, lack of "con­
stant routine" protocols, and differences in the frequency of sampling and 
selected phase marker (peak, trough, onset) of measured rhythms. 

"Seasonal affective disorder"70 consists of recurrent depressions occur­
ring annually during the fall and winter, affecting as much as 5% of the 
general population. In addition to the expected symptoms of decreased ac­
tivity and libido, there are atypical features of overeating, weight gain, and 
hypersomnia. Frequently, these patients report amelioration of depression 
after traveling south. One environmental variable that shows a pro­
nounced seasonal change in temperate latitudes is exposure to sunlight. 71 

The notion that a shortened winter day length might be responsible for 
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this syndrome has led to successful therapies using bright light (see later). 
Aging and Dementia.-Elderly persons often have characteristic 

changes in the timing and pattern of their sleep. It is possible that daytime 
napping, fragmented sleep, and early morning awakening in the aged 
might be secondary to reduced amplitude and/or shortened free-running 
period of the circadian pacemaker's oscillation. 72 Some data on body tem­
perature, motor activity, and neuroendocrine secretory rhythms in the el­
derly are consistent with this idea. 73- 75 Other evidence raises the suspicion 
that elements of the circadian clock become less tightly coupled with ad­
vancing age. 40 An especially intriguing observation is the finding of appar­
ent cell loss in the SCN during normal aging and in patients with 
Alzheimer's disease. 76 It is important to note that age-associated changes 
in motor activity levels and sensitivity to environmental cycles may exert 
masking effects on marker rhythms that could account for some of the dif­
ferences between young and old subjects. 77 Some preliminary work study­
ing 80-year-olds in a "constant routine" protocol does suggest that age­
related deterioration might be occurring mostly in the circadian pacemak­
er's entrainment and output pathways and not in the oscillatory mecha­
nism itself. 78 In any case, it is tempting to speculate that diminished 
integrity of the circadian system in Alzheimer's disease,79· 80 while surely a 
consequence of the disease itself, might also contribute to symptoms such 
as fluctuating confusion and "sundowning." 

Resetting the Clock 

Light.-The discovery that bright light can entrain human rhythms, shift 
their phase, and suppress melatonin secretion (see earlier) has revolution­
ized our thinking about resetting the human circadian clock. Advance or 
delay phase shifts can be predicted by understanding the phase-response 
curve to light {see Fig 4). In this way, scheduled exposure to daylight (in 
the afternoon after westward flights, in the early morning after eastward 
flights) may help reduce the symptoms of jet lag81; indeed, subjects al­
lowed outdoors after a flight do seem to resynchronize faster than those 
kept indoors. Also, patients with the delayed sleep phase syndrome may 
improve on a regimen designed to phase-advance circadian rhythms, i.e., 
bright light in the morning and darkness in the evening. 82 Similarly, adap­
tation to nocturnal shift work can be enhanced b~ exposure to bright light 
during the night and darkness during the day. 83

• Recently, applied light 
of a specific timing, intensity, and duration a~eared to result in an "ar­
rest" of the circadian pacemaker's oscillation ; this finding suggests the 
exciting future possibility that a properly timed, second light pulse might be 
used to instantaneously reset the circadian system to any desired clock 
time. 

"Phototherapy" in seasonal affective disorder has received wide atten­
tion.86 A remission rate of 75% has been reported after daily exposure to 
10,000 lux for 30 minutes or 2,500 lux for 2 hours; broad-band white light 
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is more effective than restricted bandwidths,87 and dim (100 lux) light is 
not therapeutic. Improvement begins within 4 days, but patients usually re­
lapse if lights are discontinued. Recent evidence suggests that bright light 
may also help otherwise normal people with the "winter blahs. "88 Nonsea­
sonal de~ressives, including those with atypical symptoms, do not seem to 
respond. 9· 90 The explanation for light's antidepressant action is un­
clear91· 92 but appears not to depend on sleep deprivation, melatonin sup­
pression, or extension of the environmental f hotoperiod. A seasonal vari­
ation in sensitivity to light may be involved. 9 Light exposure in the morn­
ing appears relatively more effective than in the evening, but it has not 
been conclusively demonstrated whether this is because of a phase shift of 
circadian rhythmicity, an alteration of rhythm amplitude, or some other, 
noncircadian mechanism. 94· 95 

There are certain environments with deficient or exotic environmental 
cycles, and bright light might be profitably employed to promote entrain­
ment in such special circumstances. Astronauts in earth orbit, for example, 
see a 90-minute day-night cycle, a frequency that lies outside the possible 
range of entrainment of the human clock; scheduled bright light might help 
their adaptation. Residents living north of the Arctic Circle experience 
nearly full darkness around the time of the winter solstice; their "midwinter 
insomnia" may respond to bright light. 96 Closer to home, the intensive 
care unit is an environment in which patients generally do not experience 
the alternation of day and night. Interestingly, delirium and disorientation 
appear to be more common in a windowless, artificially lit unit than in one 
with windows open to daylight, 97 and infant outcome is improved in a 
neonatal nursery with cycles of light and darkness. 98 Last, because patients 
with Alzheimer's disease typically see less than 1 hour of more than 2,000 
lux light per day,99 the effects of bright light therapy in these patients 
should be of extraordinary interest. 

Social Cues.-Although bright light may be the most powerful envi­
ronmental timing cue, 100 humans living under natural conditions in a mod­
em industrial society probably do not receive sufficient amounts for the 
purposes of entrainment. 101 Nonphotic societal cues-e.g., knowing the 
time of day; scheduling meals, activities and sleep; and interactin~ socially­
may be the more relevant entraining factors, given their ubiquity. 1 2 The crit­
ical stimulus for these social cues has been difficult to determine, but recent 
fascinating experiments in a number of animal species (especially hamsters) 
are proving informative. Hamster rhythms can be entrained by repeated 
social contacts between conspecifics, and the phase-response curve to pe­
riodic social encounters aR~ears qualitatively different in form from that re­
sulting from light pulses. 0 Unlike the "photic" curve shown in Figure 4, 
the "social" curve has phase advances during the middle to late subjective 
day and phase delays during the late subjective night or early subjective 
day. A similar curve can be generated by a manipulation both nonsocial 
and nonphotic, e.g., inducing hamsters to run by placing them in a novel 
running wheel. 104 Thus, wheel-running activity, itself one of the rhythmic 
outputs of the circadian pacemaker, also feeds back to entrain the pace-
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maker Of note appropriately timed locomotion in these animals can ac-
. ' . . . 105 

celerate their reentramment to a new, phase-shifted hght-dark cycle. 
However more research is needed before exercise can be routinely rec­
ommend~d as an antidote for human jet lag; it may not be physical activity 
per se but a correlated variable that mediates these circadian effects, e.g., 
the animals' state of "arousal." In any case, future studies of phase-shifting 
stimuli in humans will need to attend to any changes in the level or pattern 
of motor activity. 

Meals.-When food is made available for a restricted time (i.e., for a 
few hours each day), rats can anticipate the meal and increase their loco­
motor activity before food presentation. The properties of this anticipatory 
activity have been characterized and indicate that it is mediated by a circa­
dian pacemaker. 106

• 
107 However, this food-entrainable mechanism is sep­

arate from the light-entrainable mechanism based in the SCN, and food­
anticipatory rhythms persist in SCN-lesioned rats. The anatomic substrate 
for this extra-SCN oscillator is unknown and may even reside in the gas­
trointestinal tract. 106 Importantly, the circadian pacemaker in the SCN usu­
ally cannot be entrained by the anticipatory activity of food-deprived rats. 
Similarly, although the food-driven rhythms of plasma insulin and gluca­
gon are phase-shifted in human subjects consuming a single meal at break­
fast or dinner, the rhythms of body temperature and plasma cortisol re­
main relatively unaffected. 108 Further experiments in rats suggest that en­
trainment by food depends on the size of the nutrient meal and not on the 
ingestion of a single or specific foodstuff. 107 There is, therefore, little theo­
retical or empirical data at present to support the use of any special <liets to 
combat jet lag. 

Melatonin.-In animals (and especially well studied in rats) , locomotor 
rhythmicity can be entrained by daily subcutaneous injections of melato­
nin. 109 In constant conditions, entrainment occurs when the onset of the 
free-running locomotor rhythm coincides with the time of melatonin ad­
ministration; this phase relationship between injection time and activity on­
set seems to be a consequence of melatonin-induced phase advances dur­
ing the late subjective day. This characteristic is reminiscent of the phase­
response curve to social interaction/novelty-induced wheel-running/arousal 
in hamsters (see earlier). Although this similarity raises the suspicion that 
melatonin' s phase-resetting capacity might be caused by induced changes 
in sleep or activity, there is also evidence to implicate the SCN as the hor­
mone's site of action: the nuclei contain high-affinity melatonin receptors, 
SCN lesions prevent melatonin entrainment, and SCN metabolic and elec­
trical activities are altered by melatonin given during the late subjective 
day. 110• 

111 There are also some data to suggest that melatonin administra­
tion may hasten the resynchronization of rhythms to a new, phase-shifted 
light-dark cycle. 112 Of note, all of these melatonin effects may be pharma­
cologic, because the doses required are supraphysiologic and because pi­
nealectomy has little influence on overt circadian rhythmicity in rats. 

These findings in animals now have some human correlates. Melatonin 
(5 mg orally in the evening) has a phase-advancing action on the free-run-
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ning circadian rhythms of blind human subjects, 113 and such an action 
might be therapeutically used to advance the time of sleep onset in pa­
tients with delayed sleep phase syndrome.114 Both field115 and laborato­
ry116 studies of jet lag show that melatonin improves psychologic and 
physiologic readjustment to an eastward (i.e. , phase-advancing) time zone 
transition. Some of this benefit may be because of the hormone's h?'fmotic 
effects, and further well-controlled studies, including westward1 (i.e. , 
phase-delaying) flights, are needed to assess melatonin' s efficacy and 
safety as a jet lag therapy. 

Benzodiazepines.-In hamsters, the short-acting benzodiazepine triaz­
olam (Halcion) affects circadian rhythmicity. 118 A single injection shifts the 
phase of free-running rhythmicity and accelerates reentrainment to a new 
light-dark cycle; the phase-shifting effect is blocked by the benzodiazepine 
antagonist Ro 15-1788.119 Moreover, repeated daily injections of triazolam 
can synchronize rhythmicity to the period of the injection regimen120 and 
alter the entrained rhythm phase relationship to an external light-dark cy­
cle. However, the dose usually studied in hamsters is very large (2.5 mg), 
resulting in a peak plasma concentration of nearly 3,500 ng/mL 118; this 
compares to a peak of less than 4 ng/mL and a total area under the 
plasma concentration curve of less than 25 hour ng/mL in human subjects 
given a standard 0.5 mg dose. 121 The phase-response curve to triazolam 
in hamsters resembles the nonphotic curves described previously. In fact, 
the drug causes hyperactivity (not sedation) in rodents, and its phase-shift­
ing ability can be blocked completely if the animals are immobilized. 122 In 
humans, 0.5 mg of triazolam (but not 0.25 mg) is reported to reverse the 
sleep loss and da~me sleepiness that results from an acutely shifted sleep­
wake schedule, 1 but this is a dose that has been associated with cogni­
tive impairment, including amnesia. 124 Thus, the present rationale for rec­
ommending triazolam for jet lag is rather weak, and further research is 
needed to characterize its phase-shifting activity in humans. 125 

Other Agents.-Currently under investigation are a number of other 
potential pharmaceuticals. For example, interference with monoaminergic 
neurotransmission (as with the monoamine oxidase A inhibitor clor­
gyline126 or the. alpha2-adrenergic agoni~t clonidine127) modifies the free­
running period of wheel-running rhythmicity in rodents. Interestingly, lith­
ium slows circadian rhythmicity in a varie~ of organisms, including algae, 
plants, insects, molluscs, and mammals. 1 8 Curiously, Vitamin 8 12 has 
been reported to improve the sleep-wake scheduling difficulties of a few 
patients with delayed sleep phase or hypernychthemeral syn­
dromes. 129· 130 The mechanisms for any of these effects are unknown. 

Postscript 

This overview has only considered biologic rhythmicity in the circadian 
range; beyond its scope are rhythms of faster frequencies (e.g., hormonal 
pulses, rapid eye movement sleep cycles) and a host of other phenomena 
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(e.g., reproductive rhythms, seasonal behaviors, celestial navigation and 
migration) that depend in part on a daily time sense and the ability to mea­
sure day length. The entire spectrum of biologic rhythmicities is critical to 
the regulation of organisms in the time domain. Such "internal temporal 
order" helps to optimize the economy of biologic systems, better prepares 
organisms to anticipate and cope with periodic alterations in the environ­
ment3 and allows for predictive, in addition to reactive, homeostatic con­
trol. 1 1 The consequences for human health and disease are only now be­
ing realized. 
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